Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 11: 570026, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193501

RESUMO

Infection of the pasture grass Lolium perenne with the seed-transmitted fungal endophyte Epichloë festucae enhances its resilience to biotic and abiotic stress. Agricultural benefits of endophyte infection can be increased by generating novel symbiotic associations through inoculating L. perenne with selected Epichloë strains. Natural symbioses have coevolved over long periods. Thus, artificial symbioses will probably not have static properties, but symbionts will coadapt over time improving the fitness of the association. Here we report for the first time on temporal changes in a novel association of Epichloë strain AR37 and the L. perenne cultivar Grasslands Samson. Over nine generations, a seed maintenance program had increased the endophyte seed transmission rates to > 95% (from an initial 76%). We observed an approximately fivefold decline in endophyte biomass concentration in vegetative tissues over time (between generations 2 and 9). This indicates strong selection pressure toward reducing endophyte-related fitness costs by reducing endophyte biomass, without compromising the frequency of endophyte transmission to seed. We observed no obvious changes in tillering and only minor transcriptomic changes in infected plants over time. Functional analysis of 40 plant genes, showing continuously decreasing expression over time, suggests that adaptation of host metabolism and defense mechanisms are important for increasing the fitness of this association, and possibly fitness of such symbioses in general. Our results indicate that fitness of novel associations is likely to improve over time and that monitoring changes in novel associations can assist in identifying key features of endophyte-mediated enhancement of host fitness.

2.
Mol Plant Pathol ; 21(4): 512-526, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32061186

RESUMO

Fungal effector proteins facilitate host-plant colonization and have generally been characterized as small secreted proteins (SSPs). We classified and functionally tested SSPs from the secretomes of three closely related necrotrophic phytopathogens: Ciborinia camelliae, Botrytis cinerea, and Sclerotinia sclerotiorum. Alignment of predicted SSPs identified a large protein family that share greater than 41% amino acid identity and that have key characteristics of previously described microbe-associated molecular patterns (MAMPs). Strikingly, 73 of the 75 SSP family members were predicted within the secretome of the host-specialist C. camelliae with single-copy homologs identified in the secretomes of the host generalists S. sclerotiorum and B. cinerea. To explore the potential function of this family of SSPs, 10 of the 73 C. camelliae proteins, together with the single-copy homologs from S. sclerotiorum (SsSSP3) and B. cinerea (BcSSP2), were cloned and expressed as recombinant proteins. Infiltration of SsSSP3 and BcSSP2 into host tissue induced rapid necrosis. In contrast, only one of the 10 tested C. camelliae SSPs was able to induce a limited amount of necrosis. Analysis of chimeric proteins consisting of domains from both a necrosis-inducing and a non-necrosis-inducing SSP demonstrated that the C-terminus of the S. sclerotiorum SSP is essential for necrosis-inducing function. Deletion of the BcSSP2 homolog from B. cinerea did not affect growth or pathogenesis. Thus, this research uncovered a family of highly conserved SSPs present in diverse ascomycetes that exhibit contrasting necrosis-inducing functions.


Assuntos
Ascomicetos/patogenicidade , Botrytis/patogenicidade , Ascomicetos/metabolismo , Botrytis/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
3.
PLoS One ; 10(12): e0144339, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26646761

RESUMO

Allopolyploids, formed by hybridization and chromosome doubling, face the immediate challenge of having duplicated nuclear genomes that interact with the haploid and maternally inherited cytoplasmic (plastid and mitochondrial) genomes. Most of our knowledge of the genomic consequences of allopolyploidy has focused on the fate of the duplicated nuclear genes without regard to their potential interactions with cytoplasmic genomes. As a step toward understanding the fates of nuclear-encoded subunits that are plastid-targeted, here we examine the retention and expression of the gene encoding the small subunit of Ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco; rbcS) in multiple populations of allotetraploid Tragopogon miscellus (Asteraceae). These polyploids formed recently (~80 years ago) and repeatedly from T. dubius and T. pratensis in the northwestern United States. Examination of 79 T. miscellus individuals from 10 natural populations, as well as 25 synthetic allotetraploids, including reciprocally formed plants, revealed a low percentage of naturally occurring individuals that show a bias in either gene (homeolog) loss (12%) or expression (16%), usually toward maintaining the maternal nuclear copy of rbcS. For individuals showing loss, seven retained the maternally derived rbcS homeolog only, while three had the paternally derived copy. All of the synthetic polyploid individuals examined (S0 and S1 generations) retained and expressed both parental homeologs. These results demonstrate that cytonuclear coordination does not happen immediately upon polyploid formation in Tragopogon miscellus.


Assuntos
Asteraceae/genética , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Poliploidia , Sequência de Bases , Genes de Plantas , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Homologia de Sequência do Ácido Nucleico
4.
BMC Genomics ; 15: 701, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25145399

RESUMO

BACKGROUND: Hybridization coupled with whole-genome duplication (allopolyploidy) leads to a variety of genetic and epigenetic modifications in the resultant merged genomes. In particular, gene loss and gene silencing are commonly observed post-polyploidization. Here, we investigated DNA methylation as a potential mechanism for gene silencing in Tragopogon miscellus (Asteraceae), a recent and recurrently formed allopolyploid. This species, which also exhibits extensive gene loss, was formed from the diploids T. dubius and T. pratensis. RESULTS: Comparative bisulfite sequencing revealed CG methylation of parental homeologs for three loci (S2, S18 and TDF-44) that were previously identified as silenced in T. miscellus individuals relative to the diploid progenitors. One other locus (S3) examined did not show methylation, indicating that other transcriptional and post-transcriptional mechanisms are likely responsible for silencing that homeologous locus. CONCLUSIONS: These results indicate that Tragopogon miscellus allopolyploids employ diverse mechanisms, including DNA methylation, to respond to the potential shock of genome merger and doubling.


Assuntos
Metilação de DNA/genética , Inativação Gênica , Poliploidia , Tragopogon/genética , Sequência de Bases , Loci Gênicos/genética , Análise de Sequência de DNA , Sulfitos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...